$\lim I[\phi_{n}] \geq I[u]$
no matter what sequence $\phi_{n}$ tending to $u$ is considered.
$\underline{Compactness\ in\ Function\ Space,\ Arzela's\ Theorem\ and\ Applications}$

In the ordinary theory of clear maxima or minima, the existence of a greatest or smallest value of a function in a closed domain is assured by the Bolzano-Weierstrass convergence theorem: a bounded set of points always contains a convergent subsequence. This fact, together with the continuity of the function, serves to secure the existence of an extreme value.
As seen before, in the calculus of variations the continuity of the function space often has to be replaced by a weaker property, semi-continuity; for, when $\phi_{n}$ converges to $u$, generally $I(\phi_{n}) \ne I(u)$. Another difficulty in the calculus of variations arises from the fact that the Bolzano-Weierstrass convergence theorem does not hold if the elements of the set are no longer points on a line or in a n-dimensional space, but functions, curves or surfaces.
As an example, let us consider a $\phi$ with the set of functions
$$\int_0^1 e^{xy} g(y) dy = f(x)$$ where $g(y)$ is any piecewise continuous function such that $|g(y)| \lt 1$ and where $x$ has an upper bound. Then $$|f(x) - f(\zeta)| \leq \int_0^1 |g(y)| |e^{xy} - e^{\zeta y}| dy$$

$\underline{2\ Published\ 2017}$
$\underline{ISBN\ 1548969168} $ Ein gottlich Vermanung an die ersamen, wysen, eerenvesten, eltisten Eydgnossen zuo Schwytz, das sy sich vor fromden Herren hutind und entladind / Huldrichi Zwinglij, einvaltigen Verkunders des Evangelij Christi Jhesu. ...
$\underline{ISBN\ 1974100324} $ Suggestio deliberandi super propositione Hadriani pontificis Romani ...
$\underline{ISBN\ 1974317625} $ Von Erkiesen und Fryheit der Spysen : Von Ergernus und Verbeserung : Ob man Gwal
$\underline{ISBN\ 1977634192} $ Usslegen und Grund der Schlussreden oder Articklen / durch Huldrychen Zuingli
$\underline{ISBN\ 197763673X} $ Zwi Usslegen und Grund der Schlussreden oder Articklen
$\underline{ISBN\ 197763978X} $ Sinobaldo
$\underline{ISBN\ 1977637477} $ Zwi Usslegen und Grund der Schlussreden oder Articklen 2
$\underline{ISBN\ 1979870993} $ De canone missae Huldrychi Zvinglii epichiresis
$\underline{ISBN\ 1981156291} $ Ein flyssige und kurtze Underrichtung, wie man sich vor Lugen
$\underline{ISBN\ 1981192409} $ Wake Up, America: A Plea for the Recognition of Our Individual and National Responsibilities
$\underline{2\ Published\ 2018}$
$\underline{January\ 2018} $ Antwurt eins Schwytzer Purens über die ungegründten Geschrifft Meyster Jeronimi Gebwilers, Schuolmeisters zuo Strassburg, die er zuo Beschirmung der römischen [...]